
Reinhard von Hanxleden
Christian-Albrechts-Universität zu Kiel

Based on slides kindly provided by Edward A. Lee & Sanjit Seshia,
UC Berkeley, Copyright © 2008-11, All rights reserved

Lecture 6a: Synchronous/
Reactive Models

Embedded
Real-Time Systems

Lecture 6a: Synchronous/Reactive Models, Slide 2

The 5-Minute Review Session

1.  What is the actor model for FSMs? What is the
motivation for it?

2.  What does synchronous composition mean for
FSMs? What are the alternatives?

3.  How does a hierarchical state machine react?
4.  What is a reset transition? What is its alternative?

How do they compare wrt state space?
5.  What is a preemptive transition?

Lecture 6a: Synchronous/Reactive Models, Slide 3

Concurrent Composition:
Alternatives to Threads

Threads yield incomprehensible behaviors.

Composition of State Machines:
•  Side-by-side composition
•  Cascade composition
•  Feedback composition

We will begin with synchronous composition, an abstraction
that has been very effectively used in hardware design and
is gaining popularity in software design.

Lecture 6a: Synchronous/Reactive Models, Slide 4

Recall: Actor Model for State Machines

Expose inputs and outputs, enabling composition:

Lecture 6a: Synchronous/Reactive Models, Slide 5

Recall: Actor Model of Continuous-Time Systems

A system is a function that
accepts an input signal and
yields an output signal.

The domain (Definitionsmenge)
and range (Zielmenge) of the
system function are sets of
signals, which themselves are
functions.

Parameters may affect the
definition of the function S.

Lecture 6a: Synchronous/Reactive Models, Slide 6

Example: Actor model of the helicopter

Input is the net torque of
the tail rotor and the top
rotor. Output is the angular
velocity around the y axis.

Parameters of the
model are shown in
the box. The input
and output relation is
given by the equation
to the right.

Lecture 6a: Synchronous/Reactive Models, Slide 7

Recall: Composition of actor models

Lecture 6a: Synchronous/Reactive Models, Slide 8

Side-by-Side Composition

Synchronous composition: the machines react
simultaneously and instantaneously.

Lecture 6a: Synchronous/Reactive Models, Slide 9

Cascade Composition

Synchronous composition: the machines react
simultaneously and instantaneously, despite the apparent
causal relationship!

Lecture 6a: Synchronous/Reactive Models, Slide 10

Synchronous Composition:
Reactions are Simultaneous and Instantaneous

Consider a cascade composition as follows:

Lecture 6a: Synchronous/Reactive Models, Slide 11

Synchronous Composition:
Reactions are Simultaneous and Instantaneous

In this model, you must not think of machine A as reacting before machine
B. If it did, the unreachable states would not be unreachable.

SC = SA�SB

unreachable

Lecture 6a: Synchronous/Reactive Models, Slide 12

Feedback Composition

Turns out everything can be viewed as feedback composition…

Lecture 6a: Synchronous/Reactive Models, Slide 13

Example: Feedback Composition

Angular velocity
appears on both
sides. The semantics
(meaning) of the
model is the solution
to this equation.

Lecture 6a: Synchronous/Reactive Models, Slide 14

Observation: Any Composition is a
Feedback Composition

s ∈ S N

Consider an
interconnection of actors

Abstract actors
Abstract signals

Reorganize
We seek an s ∈ S N that
satisfies F(s) = s. 	
	
Such an s is called a
fixed point.	
	
We would like the fixed
point to exist and be
unique. And we would
like a constructive
procedure to find it.	
	
It is the behavior
(semantics) of the
system.	

Lecture 6a: Synchronous/Reactive Models, Slide 15

Data Types

x y

s

As with any connection, we require compatible data types:

Vy �Vx

Then the signal on the feedback loop is a function

s : N⇥Vy⇤{absent}

Then we seek s such that

F(s) = s

where F is the actor function, which for determinate systems
has form

F : (N⇥Vx⇤{absent})⇥ (N⇥Vy⇤{absent})

Lecture 6a: Synchronous/Reactive Models, Slide 16

Firing Functions

x y

s

With synchronous composition of determinate state machines,
we can break this down by reaction. At the n-th reaction, there
is a (state-dependent) function

f (n) : Vx⇥{absent}�Vy⇥{absent}

such that
s(n) = (f (n))(s(n))

This too is a fixed point.

Lecture 6a: Synchronous/Reactive Models, Slide 17

Well-Formed Feedback

x y

s

At the n-th reaction, we seek s(n) �Vy⇥{absent} such that

s(n) = (f (n))(s(n))

There are two potential problems:

1. It does not exist.

2. It is not unique.

In either case, we call the system ill formed. Otherwise, it is
well formed.

Note that if a state is not reachable, then it is irrelevant to
determining whether the machine is well formed.

Lecture 6a: Synchronous/Reactive Models, Slide 18

Well-Formed Example

In state s1, we get the unique s(n) = absent.
In state s2, we get the unique s(n) = present.
Therefore, s alternates between absent and present.

Lecture 6a: Synchronous/Reactive Models, Slide 19

Composite Machine

Lecture 6a: Synchronous/Reactive Models, Slide 20

Ill-Formed Example 1 (Existence)

In state s1, we get the unique s(n) = absent.
In state s2, there is no fixed point.
Since state s2 is reachable, this composition is ill formed.

Lecture 6a: Synchronous/Reactive Models, Slide 21

Ill-Formed Example 2 (Uniqueness)

In s1, both s(n) = absent and s(n) = present are fixed points.
In state s2, we get the unique s(n) = present.
Since state s1 is reachable, this composition is ill formed.

Lecture 6a: Synchronous/Reactive Models, Slide 22

Constructive Semantics: Single Signal

1. Start with s(n) unknown.

2. Determine as much as you can about (f (n))(s(n)).

3. If s(n) becomes known (whether it is present, and if it is
not pure, what its value is), then we have a unique fixed
point.

A state machine for which this procedure works is said to be
constructive.

Lecture 6a: Synchronous/Reactive Models, Slide 23

Non-Constructive Well-Formed State Machine

In state s1, if the input is unknown, we cannot immediately tell
what the output will be. We have to try all the possible values
for the input to determine that in fact s(n) = absent for all n.

For non-constructive machines, we are forced to do exhaus-
tive search. This is only possible if the data types are finite, and
is only practical if the data types are small.
Note: This assumes that our constructiveness analysis does not distinguish between „present
with value 0“ and „present with value 1“. If we would make this distinction, which eg would
correspond to a one-hot encoding of the signals, we could statically determine (with partial
evaluation) that in s1, a = 0 can never be the case, no matter what transition is taken. 	

Lecture 6a: Synchronous/Reactive Models, Slide 24

Must / May Analysis

For the above constructive machine, in state s1, we can im-
mediately determine that the machine may not produce an out-
put. Therefore, we can immediately conclude that the output is
absent, even though the input is unknown.

In state s2, we can immediately determine that the machine
must produce an output, so we can immediately conclude that
the output is present.
Note: In logical terms, the reasoning for s2 is based on the „law of excluded middle“ (a or ¬a =
true), which constructive logic does not include. Similarly, when considering a hardware circuit,
this circuit would be not constructive in that it would be delay sensitive. Therefore, Berry
(1999) considers the reasoning for s2 „speculative“ and rejects it. However, as Schneider et al.
(SLAP 2005) argue, we may be less conservative in software code generation (effectively
performing a static partial evaluation), which would consider this machine as constructive.	

Lecture 6a: Synchronous/Reactive Models, Slide 25

Constructive Semantics: Multiple Signals

1. Start with s1(n), · · · ,sN(n) unknown.

2. Determine as much as you can about (f (n))(s1(n), · · · ,sN(n)).

3. Using new information about s1(n), · · · ,sN(n), repeat step
(2) until no information is obtained.

4. If s1(n), · · · ,sN(n) all become known, then we have a
unique fixed point and a constructive machine.

A state machine for which this procedure works is said to be
constructive.

Lecture 6a: Synchronous/Reactive Models, Slide 26

Constructive Semantics: Multiple Actors

Procedure is the same.

Lecture 6a: Synchronous/Reactive Models, Slide 27

Constructive Semantics: Arbitrary Structure

Procedure is the same.

A state machine language with constructive semantics

will reject all compositions that in any iteration fail to
make all signals known.

Such a language rejects some well-formed compositions.

Lecture 6a: Synchronous/Reactive Models, Slide 28

Summary

¢  In a synchronous composition, reactions are
simultaneous and instantaneous – even if there are
causal relationships.

¢ All actor compositions (side-by-side, cascade) can be
regarded as feedback composition.

¢ We require compatible data types.
¢ Well-formed system has unique fixed point, which

defines the semantics (behavior) of the system.
¢ Can break this down into firing functions.
¢ Constructive systems allow iterative, constructive

procedure to find fixed-point (do not require exhaustive
search)

Lecture 6a: Synchronous/Reactive Models, Slide 29

Conclusion

The emphasis of synchronous composition, in contrast
with threads, is on determinate and analyzable
concurrency.

Although there are subtleties with synchronous programs,
all constructive synchronous programs have a unique
and well-defined meaning.

Automated tools can systematically explore all possible
behaviors. This is not possible in general with threads.

