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The 5-Minute Review Session 

1.  What is the actor model for FSMs? What is the 
motivation for it? 

2.  What does synchronous composition mean for 
FSMs? What are the alternatives? 

3.  How does a hierarchical state machine react? 
4.  What is a reset transition? What is its alternative? 

How do they compare wrt state space? 
5.  What is a preemptive transition? 
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Concurrent Composition: 
Alternatives to Threads 

Threads yield incomprehensible behaviors. 
 
Composition of State Machines: 
•  Side-by-side composition 
•  Cascade composition 
•  Feedback composition 

We will begin with synchronous composition, an abstraction 
that has been very effectively used in hardware design and 
is gaining popularity in software design. 
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Recall: Actor Model for State Machines 

Expose inputs and outputs, enabling composition: 
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Recall: Actor Model of Continuous-Time Systems 

A system is a function that 
accepts an input signal and 
yields an output signal. 
 
The domain (Definitionsmenge) 
and range (Zielmenge) of the 
system function are sets of 
signals, which themselves are 
functions. 
 
Parameters may affect the 
definition of the function S. 
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Example: Actor model of the helicopter 

Input is the net torque of 
the tail rotor and the top 
rotor. Output is the angular 
velocity around the y axis. 
 
Parameters of the 
model are shown in 
the box. The input 
and output relation is 
given by the equation 
to the right. 
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Recall: Composition of actor models 
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Side-by-Side Composition 

Synchronous composition: the machines react 
simultaneously and instantaneously. 
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Cascade Composition 

Synchronous composition: the machines react 
simultaneously and instantaneously, despite the apparent 
causal relationship! 
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Synchronous Composition: 
Reactions are Simultaneous and Instantaneous 

Consider a cascade composition as follows: 
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Synchronous Composition: 
Reactions are Simultaneous and Instantaneous 

In this model, you must not think of machine A as reacting before machine 
B. If it did, the unreachable states would not be unreachable. 

SC = SA�SB

unreachable 
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Feedback Composition 

Turns out everything can be viewed as feedback composition… 



Lecture 6a: Synchronous/Reactive Models, Slide 13 

Example: Feedback Composition 

Angular velocity 
appears on both 
sides. The semantics 
(meaning) of the 
model is the solution 
to this equation. 
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Observation: Any Composition is a  
Feedback Composition 

s ∈ S N 

Consider an 
interconnection of actors 

Abstract actors 
Abstract signals 

Reorganize 
We seek an s ∈ S N that 
satisfies F(s) = s. 	
	
Such an s is called a 
fixed point.	
	
We would like the fixed 
point to exist and be 
unique. And we would 
like a constructive 
procedure to find it.	
	
It is the behavior 
(semantics) of the 
system.	
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Data Types 

x y 

s 

As with any connection, we require compatible data types:

Vy �Vx

Then the signal on the feedback loop is a function

s : N⇥Vy⇤{absent}

Then we seek s such that

F(s) = s

where F is the actor function, which for determinate systems
has form

F : (N⇥Vx⇤{absent})⇥ (N⇥Vy⇤{absent})
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Firing Functions 

x y 

s 

With synchronous composition of determinate state machines,
we can break this down by reaction. At the n-th reaction, there
is a (state-dependent) function

f (n) : Vx⇥{absent}�Vy⇥{absent}

such that
s(n) = ( f (n))(s(n))

This too is a fixed point.
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Well-Formed Feedback 

x y 

s 

At the n-th reaction, we seek s(n) �Vy⇥{absent} such that

s(n) = ( f (n))(s(n))

There are two potential problems:

1. It does not exist.

2. It is not unique.

In either case, we call the system ill formed. Otherwise, it is
well formed.

Note that if a state is not reachable, then it is irrelevant to
determining whether the machine is well formed.
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Well-Formed Example 

In state s1, we get the unique s(n) = absent.
In state s2, we get the unique s(n) = present.
Therefore, s alternates between absent and present.
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Composite Machine 
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Ill-Formed Example 1 (Existence) 

In state s1, we get the unique s(n) = absent.
In state s2, there is no fixed point.
Since state s2 is reachable, this composition is ill formed.
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Ill-Formed Example 2 (Uniqueness) 

In s1, both s(n) = absent and s(n) = present are fixed points.
In state s2, we get the unique s(n) = present.
Since state s1 is reachable, this composition is ill formed.
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Constructive Semantics: Single Signal 

1. Start with s(n) unknown.

2. Determine as much as you can about ( f (n))(s(n)).

3. If s(n) becomes known (whether it is present, and if it is
not pure, what its value is), then we have a unique fixed
point.

A state machine for which this procedure works is said to be
constructive.
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Non-Constructive Well-Formed State Machine 

In state s1, if the input is unknown, we cannot immediately tell
what the output will be. We have to try all the possible values
for the input to determine that in fact s(n) = absent for all n.

For non-constructive machines, we are forced to do exhaus-
tive search. This is only possible if the data types are finite, and
is only practical if the data types are small.
Note: This assumes that our constructiveness analysis does not distinguish between „present 
with value 0“ and „present with value 1“. If we would make this distinction, which eg would 
correspond to a one-hot encoding of the signals, we could statically determine (with partial 
evaluation) that in s1, a = 0 can never be the case, no matter what transition is taken. 	
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Must / May Analysis 

For the above constructive machine, in state s1, we can im-
mediately determine that the machine may not produce an out-
put. Therefore, we can immediately conclude that the output is
absent, even though the input is unknown.

In state s2, we can immediately determine that the machine
must produce an output, so we can immediately conclude that
the output is present.
Note: In logical terms, the reasoning for s2 is based on the „law of excluded middle“ (a or ¬a = 
true), which constructive logic does not include. Similarly, when considering a hardware circuit, 
this circuit would be not constructive in that it would be delay sensitive. Therefore, Berry 
(1999) considers the reasoning for s2 „speculative“ and rejects it. However, as Schneider et al. 
(SLAP 2005) argue, we may be less conservative in software code generation (effectively 
performing a static partial evaluation), which would consider this machine as constructive.	
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Constructive Semantics: Multiple Signals 

1. Start with s1(n), · · · ,sN(n) unknown.

2. Determine as much as you can about ( f (n))(s1(n), · · · ,sN(n)).

3. Using new information about s1(n), · · · ,sN(n), repeat step
(2) until no information is obtained.

4. If s1(n), · · · ,sN(n) all become known, then we have a
unique fixed point and a constructive machine.

A state machine for which this procedure works is said to be
constructive.
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Constructive Semantics: Multiple Actors 

Procedure is the same. 
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Constructive Semantics: Arbitrary Structure 

Procedure is the same. 
 
A state machine language with constructive semantics 

will reject all compositions that in any iteration fail to 
make all signals known. 

 
Such a language rejects some well-formed compositions. 



Lecture 6a: Synchronous/Reactive Models, Slide 28 

Summary 

¢  In a synchronous composition, reactions are 
simultaneous and instantaneous – even if there are 
causal relationships. 

¢ All actor compositions (side-by-side, cascade) can be 
regarded as feedback composition. 

¢ We require compatible data types. 
¢ Well-formed system has unique fixed point, which 

defines the semantics (behavior) of the system. 
¢ Can break this down into firing functions. 
¢ Constructive systems allow iterative, constructive 

procedure to find fixed-point (do not require exhaustive 
search) 
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Conclusion 

The emphasis of synchronous composition, in contrast 
with threads, is on determinate and analyzable 
concurrency. 
 
Although there are subtleties with synchronous programs,  
all constructive synchronous programs have a unique 
and well-defined meaning. 
 
Automated tools can systematically explore all possible 
behaviors. This is not possible in general with threads. 


